top of page
Cerca
  • Immagine del redattoreCFBT.IT

La respirazione ideale per il vigile del fuoco in intervento.

Aggiornamento: 2 mar 2018


Dobbiamo imparare a respirare con l’autorespiratore sfruttando ogni singolo litro di aria contenuto nella bombola e non semplicemente facendolo passare attraverso la valvola di esalazione della maschera.



Disclaimer: prima di cominciare desidero avvisare che le informazioni contenute in questo scritto non hanno alcuna pretesa di sostituirsi alle informazioni che possono essere date da un medico. Io non ho alcuna competenza medica. Le informazioni riportate sono il frutto degli anni di esperienza come formatore in ambito di protezione delle vie respiratorie e dei mie studi. Nella prima parte vi è una sintesi di come agisce il nostro organismo. A mio giudizio è utile avere una conoscenza di base dei fenomeni fisici. Questo perché permette di avere un approccio più pragmatico. Per quanti non sono invece interessati a ciò, possono saltare la prima parte ed andare direttamente all’ultimo paragrafo.

Quando si parla di respirazione nell’ambito della lotta agli incendi non è sempre facile reperire le giuste informazioni. Si trovano facilmente indicazioni generiche sull’argomento (alcune estremamente interessanti), ma con il difetto di fondo di non essere specifiche alle attività di soccorso. A questo punto ai più attenti potrà sorgere un dubbio. “Ma come, non è la stessa cosa respirare in aria aperta o con un apparecchio di protezione delle vie respiratorie (APVR)?” La risposta è no, non è la stessa cosa. O quanto meno se i processi fisiologici sono i medesimi non lo deve essere l’atteggiamento dell’utilizzatore. Sono tante le differenze tra il respirare con o senza un APVR. Quella che ha il maggiore impatto è sicuramente il fatto che si ha a disposizione una riserva d’aria limitata! Questa consapevolezza deve accompagnare il soccorritore costantemente.

Dobbiamo imparare a respirare con l’autorespiratore sfruttando ogni singolo litro di aria contenuto nella bombola e non semplicemente facendolo passare attraverso la valvola di esalazione della maschera.

Assodato quindi che ci sono delle differenze e che le dobbiamo tenere in considerazione, prendiamo in esame gli elementi principali dell’apparato respiratorio e soprattutto rispondiamo ad una domanda fondamentale: perché dobbiamo respirare?

Si deve respirare per fornire costantemente uno dei reagenti della reazione che è alla base della vita, la respirazione cellulare.

Qui troviamo la prima sorpresa, per respirazione abbiamo sempre inteso l’atto di introdurre aria all’interno del nostro organismo. Scopriamo invece che vi è una definizione di respirazione che non collima con quanto abbiamo sempre pensato. Andiamo quindi a definire esattamente i vari termini:

Ventilazione

La ventilazione è un processo fisico meccanico ed automatico. Mediante l’azione diretta dei muscoli respiratori permette all’aria di entrare ed uscire dai polmoni. Questo processo è controllato dal nostro organismo a livello centrale.

La ventilazione è divisa in due azioni distinte. Le due fasi sono l’inspirazione e l’espirazione. L’espansione e successiva contrazione della gabbia toracica avvengono grazie all’azione dei muscoli respiratori. Gli stessi si dividono in primari (muscoli involontari, che non sotto il controllo diretto della nostra volontà) e secondari o accessori (muscoli volontari, che possiamo controllare).

I muscoli respiratori primari sono:

Diaframma: si contrae in modo involontario abbassandosi causando la diminuzione della pressione nei polmoni, i quali tendono a espandersi e, dunque, richiamano aria dall’esterno: in tal modo si verifica l’inspirazione;

Muscoli intercostali;

Muscoli sternocleidomastoidei: innalzano lo sterno;

Muscoli scaleni: sollevano le prime due costole.

L’espirazione avviene in modo passivo per rilassamento del diaframma e degli altri muscoli. L’espirazione può avvenire in modo volontario. In questo caso sono coinvolti i muscoli addominali (obliqui, retto e trasverso) che sono per questo definiti muscoli respiratori accessori (volontari)

Respirazione

Per respirazione, fisiologicamente parlando, si intende un termine molto ampio che comprende:

  • Respirazione esterna

  • Respirazione interna o cellulare

Respirazione esterna

La respirazione esterna è il processo deputato a conservare il giusto ratio tra ossigeno e CO2 all’interno delle cellule. La respirazione esterna caratterizza tre differenti azioni:

1) L’azione meccanica di entrata ed uscita dell’aria dall’organismo;

Elementi che permettono il trasporto dell’aria verso i polmoni

1) Naso: Al fine di proteggere le vie respiratorie da agenti patogeni estranei, di agevolare il passaggio dell’aria e di massimizzare l’efficacia dell’aria introdotta il naso svolge molteplici funzioni:

Filtra. Forse la caratteristica meno importante durante l’utilizzo degli autorespiratori a circuito aperto (essendo l’aria filtrata a monte);

Riscalda. L’aria dell’autorespiratore è fredda a causa dell’espansione dei gas. La sensazione di aria fresca è sicuramente piacevole in determinate situazioni ma non è la condizione migliore ai fini della cessione dell’ossigeno. Respirare con il naso comporta un aumento di temperatura dell’aria sino a raggiungere all’incirca la temperatura corporea;

Umidifica. L’aria contenuta nella bombola è secca. Il contenuto di acqua nelle bombole deve essere inferiore a pochi milligrammi per metro cubo, pena il rischio che ghiacci durante l’uso intenso. L’aria per poter essere assimilata in modo ottimale richiede che sia satura. Se l’aria viene inspirata dal naso la stessa ha modo di potersi arricchire di umidità;

2) Faringe. La faringe è una camera comune al sistema respiratorio e a quello digerente in quanto stabilisce una comunicazione sia con la laringe sia con l’esofago;

3) Laringe. L’aria passata attraverso la faringe si immette nella laringe. All’ingresso della laringe si trova l’epiglottide, un lembo di tessuto cartilagineo che regola il passaggio dell’aria;

4) Trachea; Alla laringe segue la trachea, un tubo rigido ma allo stesso tempo flessibile. Essa è costituita da una serie di anelli cartilaginei (una ventina circa) Gli anelli impediscono alle vie aeree di collassare durante l’ispirazione. All’estremità inferiore, circa all’altezza della quarta vertebra toracica, la trachea si biforca in due grossi bronchi che riforniscono d’aria i due polmoni

5) Bronchi. Hanno una struttura simile alla trachea. Man mano che la loro ramificazione procede, la forma degli anelli cartilaginei diviene sempre più irregolare. Nella parete bronchiale si trovano placche cartilaginee sempre più distanziate e più piccole. I bronchi si ramificano in diversi tipi di bronchioli di diametro decrescente all’interno dei polmoni.

Il naso, la faringe, la laringe, la trachea e gli stessi bronchi e bronchioli non partecipano alla seconda fase, quella dello scambio dei gas, ma hanno solo il compito di trasportare aria ossigenata agli alveoli polmonari e di rimuovere da questi l’aria satura di biossido di carbonio.

2) La cessione della CO2 e dell’ossigeno dal sangue all’alveolo e viceversa;

Alveoli: La più piccola unità polmonare visibile a occhio nudo è il lobulo. Un lobulo è costituito da uno o più bronchioli, da rami arteriosi e venosi del circolo bronchiale e da migliaia di alveoli. L’alveolo, delle dimensioni di circa 1/10 mm, possiede una esilissima parete intorno alla quale capillari estremamente sottili trasportano sangue povero di ossigeno.

Nell’ottica di massimizzare l‘efficienza della respirazione bisogna considerare che la parte alta dei polmoni è meno vascolarizzata e non ha la stessa fitta rete di capillari che circonda gli alveoli della parte bassa. Questa spiega perché è così importante far affluire l’aria nella parte bassa dei polmoni.

Gli alveoli, distribuiti a grappolo d’uva attorno a un bronchiolo terminale, sono completamente avvolti da un fittissimo intreccio di microscopici capillari. Poiché lo spessore delle pareti alveolari e dei capillari non è mai superiore a quello di una cellula, l’aria viene a trovarsi vicinissima al sangue circolante. Le cellule epiteliali degli alveoli sono ricoperte in permanenza da una sottile pellicola liquida, nella quale i gas possono sciogliersi e diffondere così attraverso le membrane. Il sangue che irrora gli alveoli è quello pompato ai polmoni dal cuore dopo aver completato il suo giro per tutto il corpo. Provenendo dalla periferia del corpo è povero di ossigeno e ricco di biossido di carbonio. Il processo chimico dello scambio di gas avviene “per diffusione”: una sostanza “diffonde” sempre dà A verso B se la sua concentrazione è più alta in A che in B. Negli alveoli la concentrazione di ossigeno è più bassa di quella dell’aria inspirata e più alta di quella del sangue dei capillari circostanti. Nel caso del biossido di carbonio la differenza è piccola, ma è sufficiente, grazie alla buona diffusibilità di questo gas, a eliminare il biossido di carbonio prodotto.

Sangue arterioso:

  • Contenuto O2, ± 95 mm Hg

  • Contenuto CO2, ± 40 mm Hg

Sangue venoso:

  • Contenuto O2, ± 40 mm Hg

  • Contenuto CO2, ± 46 mm Hg

Da notare come il contenuto di ossigeno nel sangue venoso sia ancora notevole. Pertanto quello che è stato introdotto nei polmoni con l’aria, che è passato nel sangue arterioso, non è rilasciato tutto alle cellule dei vari tessuti, che ne avrebbero un grande bisogno, ma resta in parte nel sangue e, con il sangue venoso torna ai polmoni da dove viene in buona parte restituito all’aria con l’espirazione. Questa affermazione riveste grande importanza nel momento in cui l’aria disponibile è in quantità limitata. Molto dell’ossigeno che è contenuto nell’aria delle bombole non viene adeguatamente utilizzato dall’organismo.

3) Il trasporto della CO2 e dell’ossigeno per mezzo del sangue verso e da i tessuti;

Il sistema cardiovascolare è formato dal cuore e dai vasi sanguigni che sono responsabili del continuo flusso di sangue in tutto il corpo. Il sangue circola nel sistema cardiovascolare e la sua funzione principale è quella di trasportare ossigeno alle cellule che compongono l’organismo.

Questo sistema è formato da una serie di vasi sanguigni, le arterie e le vene. L’energia per far circolare il sangue viene fornita dal cuore, che durante la fase di contrazione si spreme come una spugna e spinge il proprio contenuto nelle arterie principali. Terminata la contrazione, il cuore si rilascia e il sangue ritornando attraverso le vene lo riempie di nuovo preparandosi ad una nuova contrazione.

Il sangue viene spinto fino alla più estrema periferia, nel letto capillare, dove può svolgere la sua funzione di nutrimento dei tessuti. Una persona adulta ha circa 5 litri di sangue che circolano nel proprio corpo in circa 1 minuto.

Nelle arterie scorre il sangue ricco di O2. Esse si ramificano nel corpo in vasi sempre più piccoli sino a formare una rete di vasi piccolissimi, detti capillari sanguigni, che si trovano tra le cellule dei vari organi. È proprio nella rete dei vasi capillari che il sangue rilascia l’O2 alle cellule e queste cedono la CO2 al sangue.

I capillari poi convergono in una serie di vasi sanguigni di dimensioni crescenti chiamati vene e che riportano il sangue al cuore.

La respirazione cellulare

Per trasformare l’energia delle sostanze nutritive come lo zucchero, le cellule utilizzano un processo biochimico conosciuto con la definizione di respirazione cellulare. La respirazione cellulare è un processo esotermico di ossidoriduzione, una combustione controllata, che consta di una catena di reazioni.

La produzione di energia per mezzo della respirazione cellulare richiede un rifornimento continuo di ossigeno e genera, come prodotto anche del biossido di carbonio. Il sistema respiratorio permette la respirazione cellulare prelevando l’ossigeno dall’aria inspirata ed eliminando il biossido di carbonio dall’organismo.

Cibo +O2 → CO2 + H2O + ATP*

* ATP= Adenosintrifosfato (cioè energia)

L’ ATP è la molecola nella quale viene temporaneamente immagazzinata l’energia ottenuta dalla respirazione cellulare. E’ presente in piccolissima quantità all’interno della cellula e viene continuamente prodotta. La quantità totale presente, in un dato momento nel corpo umano è nell’ordine di 1 grammo (non soddisfa le esigenze di un lavoro muscolare intenso di pochi secondi). Nell’arco di 24 ore senza che vi siano sforzi importanti ne vengono prodotti indicativamente alcune decine di kg (40/50 kg).

I muscoli traggono principalmente la loro energia da questa sostanza.

Produzione di ATP

La produzione di ATP può derivare da:

  • Utilizzando un meccanismo aerobico, nel quale vi è una combustione di zuccheri e grassi in presenza di ossigeno (come prodotti finali, oltre all’energia, si hanno biossido di carbonio ed acqua). Questo sistema è il meno dispendioso perché non vi è formazione di scorie. Infatti, con la respirazione polmonare la CO2 può essere facilmente estratta dal sangue;

  • Dagli zuccheri senza la presenza di O2 (meccanismo anaerobico). Energeticamente parlando più dispendioso perché con l’utilizzo della stessa quantità di zuccheri si ottiene meno ATP, rispetto all’attività aerobica e inoltre perché vi è produzione e accumulo di acido lattico (elemento limitante la prestazione).

L’acido lattico, che abbiamo visto essere un sottoprodotto dell’attività anaerobica dei muscoli, si riversa da quest’ultimi nel sangue. Veicolato dal sangue raggiunge cuore, fegato e muscoli inattivi, dove viene riconvertito in glucosio. Nondimeno, durante un esercizio fisico impegnativo (per intensità e/o per durata), è possibile che i muscoli producano nell’unità di tempo più acido lattico di quanto si riesca a metabolizzare. La concentrazione di acido lattico nel sangue aumenta fino al punto in cui i muscoli attivi non riescono più a metabolizzarlo. Questo genera affaticamento e successiva incapacità di sostenere lo sforzo, talvolta accompagnato da bruciore. Tuttavia nel momento in cui i muscoli riprendono la loro normale attività aerobica, l’acido lattico viene eliminato dal circolo sanguigno (nel giro di qualche decina di secondi o di pochi minuti). La gran parte di quanto se n’era accumulato nei muscoli attivi viene smaltito. Questa è un operazione che richiede tutt’al più un paio di ore dall’inizio dell’attività fisica.

Qualcuno si potrebbe chiedere che importanza rivestono queste informazioni al vigile del fuoco. La domanda è lecita ma richiede un ulteriore approfondimento prima di essere evasa.

Qualcuno di voi ha mai provato a misurare la saturazione dell’ossigeno nel sangue? Solitamente si usa uno strumento conosciuto con il nome di saturimetro o di ossimetro. Molto spesso disponendo anche di un misuratore del battito cardiaco assume la definizione di pulsiossimetro. Questo strumento permette il monitoraggio non invasivo della saturazione di ossigeno dell’emoglobina arteriosa (SpO2) e della frequenza cardiaca. I valori sono espressi in percentuale per quanto riguarda l’ossigenazione e in bpm per il battito. Un interpretazione speditiva (laica e non medica) dei valori è la seguente:

  • In un adulto in condizioni normali l’emoglobina legata è compresa tra il 96% e il 99%;

  • Se 100% si potrebbe essere in presenza di una possibile iperventilazione. La ragione potrebbe essere un attacco d’ansia, tachicardia o attacchi di panico;

  • Se il valore è tra il 93% e il 95% vi potrebbe essere una leggera ipossia;

  • Al di sotto del 92% indica un insufficienza di ossigeno nel sangue.

Da quando sono solito monitorare la saturazione degli allievi non ne ho trovato nemmeno uno che fosse al di sotto del 93%. Questo nonostante il fatto tutti abbiamo ben presente la sensazione di fatica legata alla sensazione di non “avere abbastanza aria”. Come possono coincidere le due cose? Quantità adeguata di ossigeno legato all’emoglobina in circolo nel sangue arterioso con l’oggettiva difficoltà a portare a termine l’esercizio proposto? Per avere tutti gli elementi per rispondere al quesito serve fare un ulteriore precisazione. Bisogna in effetti conoscere le dinamiche che regolano la frequenza degli atti respiratori nell’organismo?

La frequenza degli atti respiratori è governata dalla quantità di CO2 prodotta dai processi di respirazione cellulare.

Nel midollo allungato, (conosciuto anche come medulla oblongata o mielencefalo), che è parte del tronco cerebrale risiedono i centri bulbari della respirazione. Il midollo allungato è l’organo che contiene al suo interno i neuroni recettori che controllano la concentrazione del CO2 nel sangue. La quantità di CO2prodotta quindi regola l’ampiezza e la profondità degli atti respiratori. Infatti un livello elevato di biossido di carbonio segnala un aumento dell’attività cellulare e quindi un maggior fabbisogno di ossigeno. I recettori perciò reagiscono immediatamente ordinando un’intensificazione del ritmo e della profondità del respiro. Questi recettori sono molto sensibili, lo 0.3% in più di biossido di carbonio comporta un aumento significativo (può arrivare al doppio) degli atti respiratori.

Vi sono anche altri “sensori”. I chemiocettori, situati nell’arco aortico e alla biforcazione delle carotidi sono sensibili alle variazioni della PCO2 (pressione parziale della CO2), ma anche alla diminuzione della PO2 e del pH; quando si esegue uno sforzo muscolare intenso, i muscoli consumano molto O2 e producono CO2, determinando, inoltre, una diminuzione del pH del sangue. Queste tre azioni combinate (aumento della PCO2, diminuzione della PO2 e variazione del pH) determinano una scarica di impulsi nervosi, che, da questi recettori convergono sia al centro respiratorio, aumentando la frequenza e la profondità del respiro, sia al centro cardio-regolatore, aumentando la frequenza e l’ampiezza del battito.

La frequenza respiratoria, dunque, è determinata soprattutto dalla quantità di CO2 che è necessario espellere dall’organismo.

Il problema è che molto spesso la soglia di tolleranza dell’organismo nei confronti della concentrazione di CO2, sia molto bassa e ciò comporta che vi sia l’impulso di espirare anche se i valori sono tutt’altro che eccessivi, anzi sono molto bassi. Di conseguenza si respira troppo e si elimina una quantità eccessiva di CO2.

Qui vi è l’ennesimo colpo di scena. Cosa comporta una bassa soglia di tolleranza alla CO2?

Comporta che l’organismo sia meno efficiente negli scambi O2-CO2 a livello cellulare. Vediamo nel dettaglio come avviene questo scambio e cosa lo favorisce.

Per farlo ci aiutiamo facendo un parallelo con l’alimentazione[i]. È cosa nota che per nutrirsi bene non basta riempire lo stomaco con la maggior quantità possibile di cibo; occorre invece che gli elementi nutritivi del cibo (mangiato in quantità giusta) passino nel sangue e da questo nei vari tessuti dell’organismo. Se qualcosa in questi meccanismi di assimilazione non funziona, si può morire di fame pur mangiando il giusto. E’ questo ad esempio quello che accadeva ai diabetici prima della scoperta dell’insulina. Il loro sangue era pieno di zucchero ma mancava dell’elemento (l’insulina) che permette che possa essere rilasciato ai tessuti, che di conseguenza “morivano di fame”. Al contrario quando si pensa alla necessità di respirare si è quasi tutti portati a pensare che “tanto è meglio”. Da qui il detto di prendere un bel respiro, fare un respiro a bocca piena e così via.

Cosa succede una volta introdotto l’O2 nei polmoni? Innanzitutto l’O2 deve passare dai polmoni al sangue (e, salvo casi di malattie polmonari o bronchiali, questo quasi sempre funziona bene). Dal sangue, l’ossigeno deve poi essere assimilato dalle cellule dei tessuti dei vari organi. E qui invece si verificano molto spesso dei problemi. Cosa succede? Accade che le particelle di ossiemoglobina del sangue (e cioè l’emoglobina che, dopo avere assimilato l’ossigeno, si è appunto trasformata in ossiemoglobina) trattengono strettamente l’ossigeno, rifiutando di cederlo e lasciarlo passare nei tessuti. Gli organi soffrono di carenza di ossigeno, pur in presenza di un sangue saturo di ossigeno, esattamente come gli organi dei diabetici soffrono di mancanza di zucchero pur in presenza di un sangue saturo di zucchero! Come mai? Perché per consentire il passaggio dell’ossigeno dal sangue ai tessuti è necessaria la presenza di biossido di carbonio in quantità sufficiente. In assenza di CO2 nella giusta concentrazione, l’ossiemoglobina nel sangue non può liberare l’ossigeno e lasciarlo passare nei tessuti in misura sufficiente!

La necessità della CO2 per il passaggio dell’O2 dal sangue ai tessuti è stata scoperta agli inizi del secolo scorso e prende il nome di “effetto Verigo-Bohr”[ii]. L’atmosfera ha una concentrazione di ossigeno del 21%, potenzialmente alle nostre cellule ne potrebbe bastare anche un po’ meno. Le nostre cellule hanno invece bisogno di una concentrazione di biossido di carbonio al 6,5% mentre l’atmosfera ne contiene solamente lo 0,03%. Siamo ancora molto lontani dal 6,5% presente nell’organismo dei bambini nel grembo materno e all’interno delle nostre cellule da adulti. La CO2 non è quindi soltanto un prodotto di scarto dei processi di respirazione cellulare ma è necessaria per molte funzioni nell’organismo umano; è tra l’altro essenziale per consentire il passaggio dell’ossigeno dal sangue alle cellule dei tessuti. In assenza di CO2 questo passaggio non avviene. E’ indispensabile quindi che nell’organismo vi sia la quantità giusta di CO2. Una respirazione eccessiva, profonda e rapida, provoca, con l’espirazione, una perdita eccessiva di CO2, e questa perdita provoca a sua volta degli scompensi nell’organismo.

Ora abbiamo tutti gli elementi per poter formulare le risposte e possiamo quindi tornare alla domanda principe.

Qual è l’aspetto che ha maggiore impatto durante gli interventi con autorespiratori?

La risposta non può essere altro che: l’autonomia limitata dal fatto di non avere una riserva d’aria infinita.

Quali sono le situazioni che ingenerano i comportamenti più virtuosi?

  1. Avere un alta soglia di tollerabilità della CO2;

  2. Attivare il centro respiratorio in maniera tale che, scaricando la CO2 in eccesso, esso riduca la frequenza respiratoria.

La cosa sembra impossibile da ottenere. L’efficienza più elevata si ha quando il nostro organismo sopporta elevati livelli di CO2. Cosa che favorisce la cessione di ossigeno dal sangue ai tessuti. Al tempo stesso però si dovrebbe favorire la fase di espirazione per scaricare la CO2 prodotta al fine di ridurre la frequenza respiratoria.

Quale è la situazione nella quale invece è molto più frequente imbattersi?

  1. Bassa soglia di tollerabilità alla CO2;

  2. In caso di aumentato fabbisogno di O2 da parte del nostro corpo, una iperventilazione spinta generata dalla preponderanza della fase di inspirazione sull’espirazione.

Cosa comporta questo?

Si ingenera una reazione a catena che fa sì che si elimini la CO2 prima che raggiunga i valori ottimali e che vi sia una preponderanza dell’inspirazione rispetto all’espirazione. Più introduco O2, più devo compiere un lavoro.

Durante l’intervento con gli autorespiratori se questo circolo non viene interrotto, porta a “buttare via” tutta la riserva d’aria a disposizione.

Questo è un aspetto molto importante e da tenere nella giusta considerazione. Significa che in caso di uno sforzo che comporta un aumento degli atti respiratori, per ridurre la frequenza bisogna agire sulla profondità e l’efficacia della fase di espirazione.

Normalmente si è portati a privilegiare l’inspirazione accorciando la fase di scarico. Si ottiene però l’effetto contrario perché, aumentando la frequenza si svolge un lavoro maggiore che richiede più ossigeno e di conseguenza una maggiore CO2 che viene rilevato dai ricettori del centro respiratorio che ordinano di aumentare la frequenza respiratoria, si entra quindi in un circolo vizioso che potrebbe avere conseguenze pericolose.

Più O2 per compiere il lavoro, meno tollerabilità alla CO2 = frequenza respiratoria elevatissima.

Ultimo elemento utile da conoscere è la definizione esatta di iperventilazione. Cosa significa “iperventilare?” Più che “respirare troppo” in assoluto, significa invece respirare in modo non adeguato ed eccessivo rispetto alle esigenze dell’organismo impegnato in una determinata attività. Una respirazione che sarebbe adeguata se si stesse correndo o comunque svolgendo attività fisica, (e durante l’attività fisica l’organismo produce una grossa quantità di CO2, che deve in effetti essere in parte eliminata) è invece eccessiva e dannosa se non si sta compiendo un intensa attività fisica (per i vigili del fuoco per esempio potrebbe essere al momento della ricezione dell’allarme). In questo caso l’organismo reagisce, in base ad un istinto primordiale, (la cosiddetta “risposta adrenergica, spavento = combatti o fuggi”) come se si fosse in presenza di un pericolo che richiederà un’intensa attività fisica e che scatena l’impulso a respirare molto, appunto in previsione dell’attività fisica con accumulo di CO2 che invece in genere non avviene, perché si resta seduti (falso allarme, attività che non richiede dispendio fisico, ecc.). Il frequente ripetersi di questi episodi di stress quotidiano porta allo sfasamento del ritmo respiratorio, che diviene in permanenza, anche quando si dorme, un po’ più intenso del necessario.

Tecniche di respirazione conservative dell’aria

Ora che abbiamo la conoscenza dei meccanismi dell’organismo possiamo ipotizzare delle risposte operative. Quando si usa un apparecchio di protezione delle vie respiratorie, quale tipologia di respirazione è più idoneo utilizzare?

La risposta prevede tre metodologie diverse in funzione dello sforzo che si sta compiendo e dello scenario operativo.

I tre sistemi sono elencati in ordine decrescente di frequenza di utilizzo e di “preferibilità” di adozione.

1) Naso in – naso out. È senza ombra di dubbio la tecnica di respirazione che permette di massimizzare l’efficienza respiratoria. Vediamo nel dettaglio perché questo avviene.

Essa consiste in:

  • Inspirare normalmente con il naso;

  • Espirare normalmente con il naso.

Inspirazione dal naso. Favorisce:

  1. Aumento del tasso di umidità dell’aria;

  2. Aumento della temperatura dell’aria;

  3. Favorisce la respirazione diaframmatica. L’uso del diaframma a sua volta consente:

    1. Una respirazione più profonda andando ad interessare la parte più vascolarizzata dei bronchi;

    2. Una respirazione che richiede meno energia. Il movimento del diaframma non richiede di innalzare o muovere altre parti del corpo come invece succede con la respirazione toracica (spostamento all’esterno della gabbia toracica e verso l’alto della testa);

  4. Riduce di molto le possibilità di entrare in affanno. L’affanno è probabilmente il pericolo maggiore per quanti utilizzano degli APVR;

  5. Ha il vantaggio di favorire una respirazione più capiente rispetto a quella toracica, con conseguente diminuzione del ritmo cardiaco e aumento della resistenza all’affaticamento, un aspetto molto importante durante gli interventi con autorespiratori;

  6. Mediamente un individuo che utilizza la respirazione addominale esegue circa 10 atti respiratori al minuto. Chi invece utilizza la respirazione toracica, esegue mediamente 15/16 atti respiratori al minuto;

  7. Porta una maggiore quantità di sangue agli organi inferiori.

Espirazione con il naso. Favorisce:

  1. Riduzione della quantità di CO2 dispersa per effetto dell’espirazione. Abbiamo visto che la CO2 è indispensabile per favorire lo scambio O2-CO2 a livello cellulare. Espirando con il naso quindi aiuta a mantenere elevata la quantità di CO2 prodotta dalle cellule;

  2. Riduce la quantità di vapor d’acqua disperso per effetto della Perspiratio insensibilis. A causa della ridotta efficienza del sistema che consente la termoregolazione (a causa del DPI EN 469 il sudore prodotto dal nostro corpo non può evaporare) è indispensabile mantenere elevati livelli di idratazione dell’organismo. Espirando con il naso si dimezza la quantità d’acqua espirato rispetto a quanto avviene con la bocca.

Adottare sempre questo sistema permette di raggiungere due obbiettivi diversi:

  • Obbiettivo a breve termine. Il risultato a breve termine è quello di utilizzare la tecnica di respirazione che permette il massimo dell’efficienza in termini di consumo di aria e produzione energetica;

  • Obbiettivo a medio-lungo termine. Utilizzare questa tecnica abitua l’organismo a sopportare livelli più elevati di CO2. Un po’ alla volta quindi si sposta verso l’alto l’asticella del livello di CO2

Nel momento in cui non è più sostenibile respirare utilizzando il solo naso si hanno di fronte due possibili scelte. La prima è quella di ridurre il carico di lavoro. Molto spesso sarebbe sufficiente semplicemente rallentare un po’ mantenendo livelli elevati di efficienza respiratoria. Qualora questo non fosse possibile la seconda possibilità prevede di utilizzare la seconda metodologia di respirazione.

2) Naso in-bocca out. Conosciuta come R-EBT. Questa tecnica è stata sviluppata da KEVIN J. REILLY membro del consiglio del Fire Safety Directors Association of New York City[iii];

R-ebt sta per: Reilly Emergency Breathing Tecnique (tecnica di respirazione in emergenza Reilly).

Essa consiste in:

  • Inspirare normalmente con il naso;

  • Espirare con la bocca, parzializzando l’apertura e prolungando l’espirazione;

Come si può notare non è richiesto nulla di complicato da realizzare. La particolarità consiste nel inspirare con il naso (scaldando e inumidendo l’aria) ed espirare con la bocca. Con la parzializzazione dell’apertura della bocca si ottiene il duplice scopo di forzare leggermente la fuoriuscita dell’aria e conseguentemente di prolungare la fase di scarico.

I vantaggi dell’inspirazione con il naso sono i medesimi della tecnica precedente. Mentre utilizzare l’apertura della bocca per espirare permette di ridurre il livello di CO2. Livello elevato che obbliga il nostro organismo ad aumentare la frequenza degli atti respiratori. L’azione ragionata di espirare con la bocca impedisce di inspirare con la stessa bocca come prima risposta ad uno stimolo di “mancanza d’aria”. Cosa che abbiamo visto essere deleteria per la durata della riserva d’aria.

Quindi in risposta ad un carico di lavoro maggiore che non consente di mantenere il profilo di respirazione ottimale, naso-naso, si può rispondere aumentando la durata della fase di scarico utilizzando la bocca.

3) Naso in – bocca out in emergenza. Skip breathing o “salto del respiro”

Essa consiste in:

  • Inspirare normalmente con il naso;

  • Effettuare una piccola pausa (non deve essere stressante);

  • Inspirare normalmente con il naso;

  • Effettuare una piccola pausa (non deve essere stressante);

  • Espirare con la bocca, parzializzando l’apertura e prolungando l’espirazione

Deve essere chiarite sin dall’inizio che questa metodologia di respirazione può essere utilizzata solo in caso d’emergenza. Deve essere “l’estrema ratio”.

Originariamente sviluppato per la subacquea, può essere utilizzato anche dal singolo pompiere. Il primo passo consiste nell’inspirare e trattenere il respiro. Quando si sente il bisogno di espirare, si prende un respiro supplementare e poi si espira lentamente. Dopo aver esalato, si deve trattenere di nuovo il respiro fino a quando non si ha bisogno di respirare. Tuttavia, la persona non deve trattenere il respiro fino a provare disagio. La durata della pausa può durare solo pochi secondi e varia da persona a persona.

Ci si può chiedere: “Perché non utilizzare questa tecnica ogni volta che si usa un autorespiratore?” Perché per i vigili del fuoco, il solo e unico scopo di questa tecnica, è quello di essere uno “strumento salvavita”, non un metodo per migliorare le prestazioni di lavoro. I vigili del fuoco impegnati nel salto del respiro devono concentrarsi sul proprio respiro, non possono pensare agli altri compiti. Inoltre, trattenere il respiro può avere conseguenze fisiche, come l’ipossia. Oltre a ciò, durante le normali operazioni di lotta contro l’incendio, i vigili del fuoco consumano un sacco di energia e hanno bisogno di ossigeno supplementare per soddisfare questa condizione. Anche se la tecnica è relativamente semplice, la concentrazione mentale necessaria è notevole.

In primo luogo, il vigile in difficoltà deve attuare le normali procedure di Mayday, come chiedere aiuto tramite la radio personale, indicare la propria posizione (se nota), posizionarsi lungo il perimetro delle pareti, e così via. Se il vigile è intrappolato e in attesa di soccorso, dovrebbe cominciare ad utilizzare lo Skip Breathing al più presto per conservare quanta più aria possibile. Facendo ciò si aumenterà il tempo a disposizione delle squadre di soccorso per individuarlo.

Anche se questa tecnica è relativamente semplice, deve essere provata più volte in addestramento per poterla utilizzare efficacemente in caso d’emergenza.

Conclusioni

La conoscenza e la consapevolezza delle specificità di un intervento con gli APVR sono la miglior arma a disposizione di un vigile del fuoco. Come preso in esame sopra, le competenze da conoscere e da sperimentare in tempo di pace non sono molte.

L’improvvisazione non deve essere una scelta ma solo la conseguenza dell’accadimento di un evento imponderabile.


[i] Attacco all’asma di Fiamma Ferraro, editore Macro Edizioni



622 visualizzazioni0 commenti

Post recenti

Mostra tutti

© 2018 CFBT ITALIA

  • Facebook - Bianco Circle
  • Instagram - Bianco Circle
bottom of page